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Functional Programming



Course software

How to install Haskell (see 'Course Software' on COMP3141 website)


If you’re using a Mac and want the Haskell for Mac IDE, please reply to my 
email



What is functional programming?



Common properties of functional languages	 	

• Functions are the main device to structure programs


• Based on the lambda calculus


• The use of higher-order functions is encouraged


• Side effects are used in a disciplined manner (pure functions)


• Sophisticated type systems (though, the Lisp family is dynamically typed)

HasKell

Lisp

OCaml
Standard ML

F#

Scheme

SchemeMaple
Clojure Scala

Racket

Agda

Idris

Swift



Functional programming with Haskell



Haskell

• Broad-spectrum programming language


• Widely used with over 2500 open-source libraries and tools

http://haskell.org/

Haskell B. Curry• Haskell is a principled language


‣ Purely functional


‣ Strictly isolating side effects


‣ Strongly typed with a surprisingly expressive type system

http://haskell.org


Simple Functions in Haskell

 harmonicMean x y =  (2 * x * y)/(x + y)   

function name

parameters body 



Functions in Haskell

 harmonicMean ::  Double -> Double -> Double
 harmonicMean     x         y      =  (2 * x * y)/(x + y)  

Optional type annotation

  double harmonicMean(double x, double y) 
  { 
       return (2 * x * y/(x + y)); 
  }

C



   
  harmonicMean x y = prod / sum  
    where 
              
      prod = 2 * x * y 
            
      sum  = x + y 

Haskell

  double harmonicMean(double x, double y) 
  { 
    double prod = 2 * x * y; 
    double sum  = x + y; 
    return (prod / sum); 
  } 

harmonicMean:: Double -> Double -> Double 

Optional, but considered good style

C

Can not be updated! 
Just like in math.

prod :: Double

Usually omitted

sum :: Double

Demo



Simple functions

  fact :: Int -> Int 
  fact 0 = 1 
  fact n = n * fact (n - 1)

• Selection between multiple equations is by pattern matching or guards

Patterns

  fact :: Int -> Int 
  fact n | n == 0    = 1  
         | otherwise = n * fact (n - 1)Guards

  int fact(int n) {  
      int res = 1; 
      while (n > 0) { 
          res = res * n; 
          n—;  
      } 
      return (res); 
  }



• Constants are simply functions with no arguments

  theAnswer :: Int 
  theAnswer = 2 * 21 



 harmonicMean ::  Double -> Double -> Double

“-> “   is right associative, that is

is the same as
 harmonicMean ::  Double -> (Double -> Double)

can be interpreted as a function that takes one Double value, and returns

a new function as result


 harmonicMean ::  Double -> Double -> Double
 harmonicMean     x         y      =  (2 * x * y)/(x + y)  

 janesFinal ::  Double -> Double
 janesFinal examMark = harmonicMean 89 examMark
   
 



 harmonicMean ::  Double -> Double -> Double

“-> “   is right associative, that is

is the same as
 harmonicMean ::  Double -> (Double -> Double)

can be interpreted as a function that takes one Double value, and returns

a new function as result


 harmonicMean ::  Double -> Double -> Double
 harmonicMean     x         y      =  (2 * x * y)/(x + y)  

 janesFinal ::  Double -> Double
 janesFinal examMark = harmonicMean 89 examMark
   
 
 jebsFinal ::  Double -> Double
 jebsFinal = harmonicMean 75



Type inference

• Compiler can work out (nearly) all types by itself


‣ You can prototype, leaving out the types, and add them later


• Type signatures are documentation


‣ The compiler makes sure the documentation is in sync with the code


• Type signatures catch bugs early — compiler complains if they are wrong!

This is the best 
of both worlds! 



Higher-order functions

  applyTwice :: (Double -> Double) 
      ->  Double -> Double 

  applyTwice fn x = fn (fn x) 

  > applyTwice sqrt 81 

  > applyTwice (\x -> x + 5) 81 

Lambda expression



• Polymorphism has a different meaning in FP than in OO


• Java's generics correspond to parametric polymorphism

Parametric polymorphism

  applyTwice :: (Double -> Double) -> Double -> Double 
  applyTwice fn x = fn (fn x) 

a a a a

Type variable



Types



Pre-defined types

• We already saw function types: a -> b


• We also saw elementary types: Int, Float, Double, Char, and so on


• Tuples group multiple types: (), (a, b), (a, b, c), and so on

 harmonicMeanT ::  (Double, Double) -> Double
 harmonicMeanT     (x, y)     =  (2 * x * y)/(x + y)
 

 harmonicMeanT ::  (Double, Double) -> Double
 harmonicMeanT pxy 
   =  (2 * (fst pxy) * (snd pxy))/(fst pxy) + (snd pxy))

fst :: (a, b) -> a  — functions defined in Prelude
snd :: (a, b) -> b    



Lists

• Lists are either empty: []


• …or consist of a head and a tail: x : xs Pronounced "cons"

Pronounced "nil"

• Lists are homogenous — all elements in one list have the same type


• List are parametric — different lists may contain elements of different type



Some operations on lists

• Length of a list


• Concatenating two lists


• Reversing the elements of a list


• Mapping a function over a list

In Haskell! 



User-defined types

• Type synonyms (typedefs in C)

  type Point = (Float, Float) 
  type Path  = [Point] 

• Algebraic data types


‣ Combination of structs and unions


‣ together with pointers in C



  data Point2 = MkPoint2 Float Float 

• Data types can be like structs in C (we call those data types product types)

  typedef struct { 
    unsigned int x, y; 
  } Point2; 

The corresponding definition in C


fields are not named,

characterised by position

in  the definition

this is called a 
data constructor



  data Point2 = MkPoint2 Float Float 

  point :: Point2 
  point = MkPoint2 1.3 2.45 

  typedef struct { 
    unsigned int x, y; 
  } Point2; 

  Point2 point = {1.3, 2.45}; 
  // or 
  Point2 point; 
  point.x = 1.3; 
  point.y = 2.45 



  data Point2 = MkPoint2  
    { xPoint :: Float 
    , yPoint :: Float 
    } 

  point :: Point2 
  point = MkPoint2 1.3 2.45 
  — or 
  point = MkPoint2 {yPoint = 2.45, xPoint = 1.3} 

  typedef struct { 
    unsigned int x, y; 
  } Point2; 

  Point2 point = {1.3, 2.45}; 
  // or 
  Point2 point; 
  point.x = 1.3; 
  point.y = 2.45 

fields can also be named



  data Point2 = MkPoint2  
    { xPoint :: Float 
    , yPoint :: Float 
    } 

 distance :: Point2 -> Point2 -> Float 
 distance (MkPoint2 x1 y1) (MkPoint2 x2 y2) = 
   sqrt ((x2 - x1)^2  + (y2 - y1)^2) 
  



• Problem: define a type to model hostnames, which can be either symbolic 
(string) or numeric address (4 integer values)


• Data types can be like unions in C (we call those data types sum types)

  data Host = MkNumericIP  Int Int Int Int 
| MkSymbolicIP String 

  enum tag {NUMERIC_IP, SYMBOLIC_IP}; 
  struct mkNumericIP { 
    enum tag       theTag; 
    unsigned short a, b, c, d; 
  } 
  struct mkSymbolicIP { 
    enum tag theTag; 
    char     *hostname; 
  } 
  typedef union { 
    struct mkNumericIP  aNumericIP; 
    struct mkSymbolicIP aSymbolicIP; 
  } Host; 
    

The definition in C




• We call Haskell's data types also product-sum types


• They can be recursive as well


• In contrast to data types in C, but much like generics in Java and C#, Haskell 
data types can be parameterised

  data Maybe a = Nothing | Just a 

Type parameter

Product-Sum Types



Identifiers in Haskell

• Alphanumeric with underscores (_) and prime symbols (')


• Case matters

Functions & variables lower case map, pi, (+), (++)

Data constructors Upper case True, Nothing, (:)

Type variables lower case a, b, c, eltType

Type constructors Upper case Int, Bool, IO



A larger example: Fractal trees


