
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

COMP3141 16s1

Functional Programming

Course software

How to install Haskell (see 'Course Software' on COMP3141 website)

If you’re using a Mac and want the Haskell for Mac IDE, please reply to my
email

What is functional programming?

Common properties of functional languages	 	

• Functions are the main device to structure programs

• Based on the lambda calculus

• The use of higher-order functions is encouraged

• Side effects are used in a disciplined manner (pure functions)

• Sophisticated type systems (though, the Lisp family is dynamically typed)

HasKell

Lisp

OCaml
Standard ML

F#

Scheme

SchemeMaple
Clojure Scala

Racket

Agda

Idris

Swift

Functional programming with Haskell

Haskell

• Broad-spectrum programming language

• Widely used with over 2500 open-source libraries and tools

http://haskell.org/

Haskell B. Curry• Haskell is a principled language

‣ Purely functional

‣ Strictly isolating side effects

‣ Strongly typed with a surprisingly expressive type system

http://haskell.org

Simple Functions in Haskell

 harmonicMean x y = (2 * x * y)/(x + y)

function name

parameters body

Functions in Haskell

 harmonicMean :: Double -> Double -> Double
 harmonicMean x y = (2 * x * y)/(x + y)

Optional type annotation

 double harmonicMean(double x, double y)
 {
 return (2 * x * y/(x + y));
 }

C

 harmonicMean x y = prod / sum
 where

 prod = 2 * x * y

 sum = x + y

Haskell

 double harmonicMean(double x, double y)
 {
 double prod = 2 * x * y;
 double sum = x + y;
 return (prod / sum);
 }

harmonicMean:: Double -> Double -> Double

Optional, but considered good style

C

Can not be updated!
Just like in math.

prod :: Double

Usually omitted

sum :: Double

Demo

Simple functions

 fact :: Int -> Int
 fact 0 = 1
 fact n = n * fact (n - 1)

• Selection between multiple equations is by pattern matching or guards

Patterns

 fact :: Int -> Int
 fact n | n == 0 = 1
 | otherwise = n * fact (n - 1)Guards

 int fact(int n) {
 int res = 1;
 while (n > 0) {
 res = res * n;
 n—;
 }
 return (res);
 }

• Constants are simply functions with no arguments

 theAnswer :: Int
 theAnswer = 2 * 21

 harmonicMean :: Double -> Double -> Double

“-> “ is right associative, that is

is the same as
 harmonicMean :: Double -> (Double -> Double)

can be interpreted as a function that takes one Double value, and returns

a new function as result

 harmonicMean :: Double -> Double -> Double
 harmonicMean x y = (2 * x * y)/(x + y)

 janesFinal :: Double -> Double
 janesFinal examMark = harmonicMean 89 examMark

 harmonicMean :: Double -> Double -> Double

“-> “ is right associative, that is

is the same as
 harmonicMean :: Double -> (Double -> Double)

can be interpreted as a function that takes one Double value, and returns

a new function as result

 harmonicMean :: Double -> Double -> Double
 harmonicMean x y = (2 * x * y)/(x + y)

 janesFinal :: Double -> Double
 janesFinal examMark = harmonicMean 89 examMark

 jebsFinal :: Double -> Double
 jebsFinal = harmonicMean 75

Type inference

• Compiler can work out (nearly) all types by itself

‣ You can prototype, leaving out the types, and add them later

• Type signatures are documentation

‣ The compiler makes sure the documentation is in sync with the code

• Type signatures catch bugs early — compiler complains if they are wrong!

This is the best
of both worlds!

Higher-order functions

 applyTwice :: (Double -> Double)
 -> Double -> Double

 applyTwice fn x = fn (fn x)

 > applyTwice sqrt 81

 > applyTwice (\x -> x + 5) 81

Lambda expression

• Polymorphism has a different meaning in FP than in OO

• Java's generics correspond to parametric polymorphism

Parametric polymorphism

 applyTwice :: (Double -> Double) -> Double -> Double
 applyTwice fn x = fn (fn x)

a a a a

Type variable

Types

Pre-defined types

• We already saw function types: a -> b

• We also saw elementary types: Int, Float, Double, Char, and so on

• Tuples group multiple types: (), (a, b), (a, b, c), and so on

 harmonicMeanT :: (Double, Double) -> Double
 harmonicMeanT (x, y) = (2 * x * y)/(x + y)

 harmonicMeanT :: (Double, Double) -> Double
 harmonicMeanT pxy
 = (2 * (fst pxy) * (snd pxy))/(fst pxy) + (snd pxy))

fst :: (a, b) -> a — functions defined in Prelude
snd :: (a, b) -> b

Lists

• Lists are either empty: []

• …or consist of a head and a tail: x : xs Pronounced "cons"

Pronounced "nil"

• Lists are homogenous — all elements in one list have the same type

• List are parametric — different lists may contain elements of different type

Some operations on lists

• Length of a list

• Concatenating two lists

• Reversing the elements of a list

• Mapping a function over a list

In Haskell!

User-defined types

• Type synonyms (typedefs in C)

 type Point = (Float, Float)
 type Path = [Point]

• Algebraic data types

‣ Combination of structs and unions

‣ together with pointers in C

 data Point2 = MkPoint2 Float Float

• Data types can be like structs in C (we call those data types product types)

 typedef struct {
 unsigned int x, y;
 } Point2;

The corresponding definition in C

fields are not named,

characterised by position

in the definition

this is called a
data constructor

 data Point2 = MkPoint2 Float Float

 point :: Point2
 point = MkPoint2 1.3 2.45

 typedef struct {
 unsigned int x, y;
 } Point2;

 Point2 point = {1.3, 2.45};
 // or
 Point2 point;
 point.x = 1.3;
 point.y = 2.45

 data Point2 = MkPoint2
 { xPoint :: Float
 , yPoint :: Float
 }

 point :: Point2
 point = MkPoint2 1.3 2.45
 — or
 point = MkPoint2 {yPoint = 2.45, xPoint = 1.3}

 typedef struct {
 unsigned int x, y;
 } Point2;

 Point2 point = {1.3, 2.45};
 // or
 Point2 point;
 point.x = 1.3;
 point.y = 2.45

fields can also be named

 data Point2 = MkPoint2
 { xPoint :: Float
 , yPoint :: Float
 }

 distance :: Point2 -> Point2 -> Float
 distance (MkPoint2 x1 y1) (MkPoint2 x2 y2) =
 sqrt ((x2 - x1)^2 + (y2 - y1)^2)

• Problem: define a type to model hostnames, which can be either symbolic
(string) or numeric address (4 integer values)

• Data types can be like unions in C (we call those data types sum types)

 data Host = MkNumericIP Int Int Int Int
| MkSymbolicIP String

 enum tag {NUMERIC_IP, SYMBOLIC_IP};
 struct mkNumericIP {
 enum tag theTag;
 unsigned short a, b, c, d;
 }
 struct mkSymbolicIP {
 enum tag theTag;
 char *hostname;
 }
 typedef union {
 struct mkNumericIP aNumericIP;
 struct mkSymbolicIP aSymbolicIP;
 } Host;

The definition in C

• We call Haskell's data types also product-sum types

• They can be recursive as well

• In contrast to data types in C, but much like generics in Java and C#, Haskell
data types can be parameterised

 data Maybe a = Nothing | Just a

Type parameter

Product-Sum Types

Identifiers in Haskell

• Alphanumeric with underscores (_) and prime symbols (')

• Case matters

Functions & variables lower case map, pi, (+), (++)

Data constructors Upper case True, Nothing, (:)

Type variables lower case a, b, c, eltType

Type constructors Upper case Int, Bool, IO

A larger example: Fractal trees

